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a b s t r a c t

Aluminum particles were synthesized with shell thicknesses ranging from 2.7 to 8.3 nm and a constant
diameter of 95 nm. These fuel particles were combined with molybdenum trioxide particles and the
electrostatic discharge (ESD) sensitivity of the mixture was measured. Results show ignition delay
increased as the alumina shell thickness increased. These results correlated with electrical resistivity
measurements of the mixture which increased with alumina concentration. A model was developed
using COMSOL for ignition of a single Al particle. The ignition delay in the model was consistent with the
experimental results suggesting that the primary ESD ignition mechanism is joule heating.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Composite energetic materials (CEM) are defined here as mix
tures of aluminum (Al) fuel and metal oxide particles, that ignite to
produce exothermic chemical energy. With the advent of nano
technology, nano Al fuel particles have shown heightened reac
tivity compared to their micron scale counterparts [1e3]. Safely
handling these powder mixtures requires a thorough understand
ing of their electrostatic ignition sensitivity yet very few studies on
electrostatic discharge (ESD) ignition have been reported in the
literature [4e6].

Most ESD ignition research is performed for the discharge of
electric energy into a sample rather than by pouring induced inter
particle transport (e.g., electrostatic sensitivity that can occur from
pouring a powder sample). An interesting finding from studying
the literature on electrostatic ignition of powders is that a paradox
exists regarding the electrical properties of the powder and the
corresponding electrostatic ignition behavior. Glor [7] studied dust
particles that had accumulated a charge through inter particle
transport. He found that as the powder’s electrical conductivity
decreased, so does the minimum ignition energy. In other words,

materials with a decreased conductivity are more readily ignited by
ESD [7]. In contrast, Foley et al.’s [8] study on AleCuO showed that
increasing electrical conductivity using additives actually
decreased the minimum ignition energy of the mixture. A striking
difference in these two studies is the way in which the electrical
stimuli were introduced to the sample. For Glor [7] electrostatic
charge accumulated within the sample, while in Foley et al. [8] the
electrostatic charge was discharged into the sample. This paradox
poses new research questions that have potential for impactful
development in this field.

As a first step, we examined electrostatic discharge (ESD) igni
tion sensitivity of nine different CEM formulations, limiting the
study to only micron Al inclusion [6]. The results showed that at
the highest setting on the ESD apparatus (i.e., which corresponded
to 100 mJ), only AleCuO ignited and its corresponding electrical
conductivity was measured to be two orders of magnitude above
the next mixture, AleMoO3 which did not ignite (i.e., 1246
compared with 40 nS/m, respectively). This was the first study to
correlate electrical conductivity to ESD ignition sensitivity in en
ergetic materials [6].

The influence of alumina in ESD ignition sensitivity was further
studied in Ref. [9]. Specifically, Weir et al. [9] examined the elec
trical conductance and ESD ignition sensitivity of aluminum and
molybdenum trioxide (Al þ MoO3) with varying Al particle size
ranging from nano to micron scales. The results showed that as
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particle diameter decreased (and alumina concentration increased)
the electrical conductance increased by 7 orders of magnitude and
minimum ignition energy required for ESD ignition reduced
accordingly. On the other hand, discretely added alumina particles
significantly reduce the mixtures electrical conductivity, desensi
tizing the mixture to ESD ignition. This study revealed that the
alumina shell may play a significant role in spurring ignition in
Al þ MoO3 by accumulating charge and acting as a capacitive
network, in contrast to discretely added alumina particles.

The objective of this work is to understand how the electrical
conductivity and ESD ignition sensitivity of Al þ MoO3 varies as a
function of the thickness of the alumina passivation shell sur
rounding the Al particles. To accomplish this objective, nano scale
Al particles were synthesized with varying shell thicknesses and
combined with nano scale MoO3 particles. Themixturewas further
studied for electrical conductivity measurements and ESD ignition
sensitivity quantified in terms of ignition delay time.

2. Experimental

The Al particles were supplied by Sigma Aldrich and had an
average particle diameter of 95 nm. The MoO3 particles were pur
chased from Nanostructured and Amorphous Materials Inc. and
had an average platelet size of 380 nm. The Al particles were
oxidized in an isothermal oven to increase the thickness of the
Al2O3 shell; thereby synthesizing particles with controlled shell
thicknesses. It is noted that the overall particle diameter does not
change, such that the shell thickness grows at the interface of
aluminum and alumina and as alumina concentration increases,
aluminum correspondingly decreases.

2.1. Material synthesis and preparation

A thermogravimetric analyzer (TGA), model STA 409 PC by
Netzsch, was used to observe the weight gain of Al particles as the
Al oxidized to Al2O3. During oxidation in the TGA, 11.48 mg of Al
powder was held in a platinum crucible while the temperature
increased at a rate of 40 �C per minute in a controlled environment
of ultra high purity oxygen. The oven continued to heat until
480 �C, a temperature that provided reasonable reaction rates
where oxidation and shell growth was observed. The Al sample
remained in the isothermal environment for 180 min as the mass
gain was monitored. The precision of the change in mass of the
sample in the TGA had a variance of 0.001mg. This datawas used to
control oxide shell growth on larger quantities of aluminum
powder.

A Neytech Qex oven was used to oxidize Al particles in an
isothermal oxygen environment. Ultra high purity oxygen was
purged in the oven chamber at a flow rate of 180 cm3/min for
10 min. This procedure ensured that the volume was flushed five
times and had a statistical purity of 99% of oxygen in the oven
chamber. The Qex oven was set to have a temperature ramp rate of
200 �C/min and a temperature of 480 �C. The settings were pro
grammed in the oven for automated control and repeatability be
tween oxidation procedures. Six samples of 0.9 g of Al powder were
prepared for each oxidation cycle. Once the chamber was purged
and the temperature of 480 �C was reached, the Al powder
remained in the oven for various durations ranging from 8 to
150 min. This variable oxidation time provided different alumina
shell thicknesses.

A transmission electron microscope (TEM), model Jeol JEM
2100, was used to examine the Al particles and measure the
thickness of the alumina shell with Gatan image analysis software
to measure the thickness of the alumina shell. Thickness mea
surements were taken from at least three different locations on

several Al particles. Fig. 1 shows three representative images of the
Al particles taken from the TEM.

The percent of active Al by weight (Y) was calculated using
Eq. (1),
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ðR dÞ3
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ðYÞ 1
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where R is the average particle radius, d is the Al2O3 shell thickness,
and r is the density of the metal (m) and metal oxide (mo). The
average shell thickness and the percent of active Al content are
listed in Table 1 for all treated Al powders.

The Al þ MoO3 mixtures were prepared to an equivalence ratio
of 1.0, corresponding to stoichiometric conditions. Details of this
mixing procedure are reported in Ref. [10].

2.2. Experimental setup

An acrylic channel was loaded with 58 mg of the powder, which
was pressed into a pellet within the channel. The pellet occupied a
volume of 31 mm3 and had a bulk density of 1.89 g/cm3. The bulk
density of the pellet was calculated to be 50% of the theoretical
maximum density (TMD). Two copper electrodes were positioned
to cover the openings in the channel such that the tips of the
electrodeswere in contact with the surface of the pellet as shown in
Fig. 2. A voltage potential was applied to the electrodes and when
greater than the dielectric strength of the pellet material, a spark
was generated which ignited the pellet. The voltage source used in
these experiments was an electrostatic discharge (ESD) tester that
is a human body model developed by Franklin Applied Physics [6].
A human body model transfers charge from a capacitor (human) to
another object. The range of voltage output is 1e10 kV which is
stored in a 0.002 mF capacitor producing up to 100 mJ of energy.

A current monitor, model 2878 from Pearson Electronics, was
used to measure the electric charge released by the ESD tester. A

Fig. 1. TEM images of the alumina shell after oxidation times of a) 150 min, b) 8 min,
and c) 30 min.

Table 1
Thickness of Al2O3 shell and weight percent active Al content for all oxidized Al
particles.

Oxidation time (min) Al2O3 thickness (nm) Wt % active Al

0 2.7 78.1
8 3.3 73.9
15 4.5 66.3
30 4.6 65.7
60 5.7 59.4
90 6.7 54.2
150 8.3 46.7

E.S. Collins et al. / Journal of Electrostatics 72 (2014) 28 32 29
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fig. 2. Electrodes in contact with the pellet in the acrylic channel. 

high voltage probe, model P6015A from Tektronix, reduced the 
voltage 1000 times, enabling the use of oscilloscopes to record the 
voltage output. Ignition delay time was measured as the length of 
time between the spark and the instant that luminosity produced a 
slope of ten, which was the maximum slope observed for all the 
tests, and detected using a photo detector; model DET210 from 
Thorlabs (see Fig. 3). The ignition energy was determined from the 
simultaneous current and voltage measurements. 

3. Results 

3.1. Ignition delay 

As the voltage potential between the two electrodes increased 
beyond the electric field strength of the medium, a spark bridged 
the electrode gap and ignited the CEM. Fig. 4 is a good represen 
tation of the voltage, current, and luminosity for all tests. As the 
spark bridged the electrode gap, the voltage decreased and the 
current increased as shown in Fig. 4a. The length of time between 
the spark and the instant that luminosity produced a slope of ten 
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fig. 3. Electrical circuit used to monitor voltage and current and measure time delay of 
the reaction. 
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(Fig. 4b) (i.e, corresponding to the maximum slope observed for all 
the tests) was recorded as the ignition delay for the reaction. 

The ignition time delay tests were conducted for CEM mixtures 
containing each batch of oxidized AI powder identified in Table 1 
combined with Mo03. Three samples were tested for each AI 
powder with varied shell thickness and the ignit ion time delay is 
shown in Fig. 5. 

All CEMs were deemed ESD ignition sensitive because all ignited 
below the maximum energy threshold of 100 mj supplied by the 
ESD apparatus. The thinner shelled AI powders experienced the 
fastest ignition. Ignition delay increased as the Al2~ shell thickness 
increased. The voltage required to ignite the powders also 
increased as the Al20 3 shell thickness increased (Fig. 6). 

32. joule heating of an aluminum particle 

The joule heating of a single AI particle was modeled using 
COMSOL Multiphysics. The equation used for calculating joule 
heating is the time dependent energy equation for incompressible 
flow as shown in Eq. (2). 
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Fig. 5. Ignition time delay for AI + Mo03 reactions with varying alumina shell 
thicknesses. 



ES. Collins et al. f journal of Elecrrostatics 72 (2014) 28 32 31 

3.5 .-----------------~ 

3 

> 2.5 .... 
- 2 :l'., 
!!l 1.5 

~ 1 

0.5 

1 • 
0 +-rT~r+~~-r~-r~~~rT~~~~~ 

0 2 4 6 8 10 
Shell Thickness (nm) 

Fig. G. Ignition voltage for AI + Mo03 reactions with varying alumina sheD thicknesses. 

ar 
pCJTt+ pCpu ·VT V· (kVT) + J·E (2) 

In Eq. (2), p is the density, Cp is the specific heat, Tis temperature, 
t is time, u is a velocity vector,] is the current density, and E is the 
electric field strength. A single AI particle was modeled and 
assumed to have a contact point with another particle on its top, 
bottom, front, back, left, and right surfaces. A current of 1 Amp 
entered the AI particle at one contact point while the rest of the 
contact points were held at ground potential. In the model, the 
initial temperature of the AI particle was 20 <>c and an initial electric 
potential was 0 V. Because convective cooling was neglected in the 
model due to the fast ignition of the particle, the boundary was 
insulated thermally. The spherical AI particle was assumed to have 
a solid AI core with an axisymmetric temperature distribution. The 
model also assumes homogeneous metals within the particle when 
in reality, the metals are not homogeneous and contain impurities 
and cracks. 

The model results for transient heating of an AI particle with an 
Al20 3 shell thickness of 2.7 nm are shown in Fig. 7. As current 
travels through a single particle, temperature quickly increased 
with time. Since the melting temperatures of the fuel and oxide are 
similar, 933 and 1068 K respectively, ignition of the particle was 
assumed to occur at the melting temperature of AI [ 11) and the 
model predicts ignition times for these condit ions to range from 3 .0 
to 5.0 ns (Fig. 7 ). Note that the modeled ignition time is significantly 
less than the experimentally measured ignition time (Fig. 5). The 
main reason for this difference is that the model predicts ignition 
delay for a single particle whereas in the experiments, the delay is 
measured for a macroscopic collection of particles. The heat 
transfer among neighboring particles within the random media of 
the reactant sample is not accounted for in this model and beyond 
the scope of this study. But it is noted, that for considering thermal 
diffusion only through a single aluminum particle, the character 
istic evaporation time assuming a continuum droplet evaporation 
model was calculated to be on the order of 4.6 x 106 d2 where d is 

2000 
~ 

~ 1500 
~ 
~ 1000 
CL 
E 
{£ 500 

0 1 2 3 4 
Time (ns) 

Fig. 7. Temperature of AI particle from joule heating COM SOL model. 
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Fig. 8. Prediaed ignition delay for a single AI particle with varying alumina shell 
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the aluminum particle diameter [ 12 ). In this model applied to the 
particles studied here, the characteristic thermal evaporation t ime 
is approximately 50 ns, and greater than the joule heating times 
determined here. Instead, the trend in behavior as shell thickness is 
varied is of interest and can be correlated to ignition delay times. 

Fig. 8 shows the ignition delay of the AI particles for all the Ah03 
shell thicknesses predicted by the COMSOL model. 

The model shows that the ignition delay increases as the shell 
thickness increases. This result is consistent with the measured 
delay (Fig. 5) and implies that the increase in shell thickness retards 
thermal energy buildup within a single particle such that ignition 
delay times are extended. This result implies that joule heating is an 
AI ignition mechanism for electric stimuli. 

The electrical conductivity was also measured using a high 
resistance low conductance meter and a two point probe method 
(6). Fig. 9 shows that electrical conductivity decreases as shell 
thickness increases. 

As the percent of Al20 3 increases, the electrical conductivity 
decreases. Also, as the percent of Al203 content increases, the 
electrical resistance increases and the current decreases, with a 
constant voltage. With more resistance impeding the flow of 
electric energy, joule heating of the aluminum core may be delayed 
thereby requiring more time to reach AI melting temperature and 
ignition. 

4. Discussion 

These results show that all AI + Mo~ samples were ESD igni 
tion sensitive (Fig. 5) but their sensitivity is controlled by the shell 
thickness surrounding the AI particle. Increasing shell thickness 
from 2.7 to 8.3 nm increases the ignition delay time up to 4 ms and 
requires up to 1000 V more electric input to achieve ignition (Figs. 5 
and 6). Modeling the heat transfer through a single AI particle 
subjected to similar electric input conditions reveals a comparable 
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trend observed experimentally: increasing shell thickness leads to
increasing ignition delay time and decreasing electrical conduc
tivity (Figs. 8 and 9). Alumina retards energy propagation in the
coreeshell structure of the aluminumealumina particle and this is
represented by the COMSOL model (Figs. 7 and 8). This finding also
suggests that joule heating is the primarymechanism of ignition for
ESD stimuli.

5. Conclusion

Aluminum particles were synthesized with varying oxide shell
thicknesses that ranged between 2.7 nm and 8.3 nm. Electrostatic
discharge was used to ignite Al þMoO3 and the ignition delay time
was measured. The physics were also modeled using COMSOL
Multiphysics software to approximate the temperature increase of
an Al particle due to joule heating. The measured and modeled
results both show similar trends in that the ignition delay increased
as the Al2O3 shell thickness increased. The increase in ignition delay
time suggests that the ESD ignition mechanism is joule heating
because the model calculates transient temperatures based on
transforming electrical stimuli into thermal energy. Alumina re
tards energy buildup within the particle such that thicker alumina
shells result in longer ignition delay times. The results reveal that
the current flow through the particle is a controlling parameter for
ignition and a thicker shell increases resistance and therefore
lowers the amount of current flowing through the aluminum core.
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